Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Results Phys ; 39: 105777, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1914968

ABSTRACT

COVID-19 is a respiratory illness caused by an ribonucleic acid (RNA) virus prone to mutations. In December 2020, variants with different characteristics that could affect transmissibility emerged around the world. To address this new dynamic of the disease, we formulate and analyze a mathematical model of a two-strain COVID-19 transmission dynamics with strain 1 vaccination. The model is theoretically analyzed and sufficient conditions for the stability of its equilibria are derived. In addition to the disease-free and endemic equilibria, the model also has single-strain 1 and strain 2 endemic equilibria. Using the center manifold theory, it is shown that the model does not exhibit the phenomenon of backward bifurcation, and global stability of the model equilibria are proved using various approaches. Simulations to support the model theoretical results are provided. We calculate the basic reproductive number R 1 and R 2 for both strains independently. Results indicate that - both strains will persist when R 1 > 1 and R 2 > 1 - Stain 2 could establish itself as the dominant strain if R 1 < 1 and R 2 > 1 , or when R 2 > R 1 > 1 . However, because of de novo herd immunity due to strain 1 vaccine efficacy and provided the initial stain 2 transmission threshold parameter R 2 is controlled to remain below unity, strain 2 will not establish itself/persist in the community.

2.
Inform Med Unlocked ; 31: 100978, 2022.
Article in English | MEDLINE | ID: covidwho-1914503

ABSTRACT

A new mathematical model for COVID-19 and HIV/AIDS is considered to assess the impact of COVID-19 on HIV dynamics and vice-versa. Investigating the epidemiologic synergy between COVID-19 and HIV is important. The dynamics of the full model is driven by that of its sub-models; therefore, basic analysis of the two sub-models; HIV-only and COVID-19 only is carried out. The basic reproduction number is computed and used to prove local and global asymptotic stability of the sub-models' disease-free and endemic equilibria. Using the fmincon function in the Optimization Toolbox of MATLAB, the model is fitted to real COVID-19 data set from South Africa. The impact of intervention measures, namely, COVID-19 and HIV prevention interventions and COVID-19 treatment are incorporated into the model using time-dependent controls. It is observed that HIV prevention measures can significantly reduce the burden of co-infections with COVID-19, while effective treatment of COVID-19 could reduce co-infections with opportunistic infections such as HIV/AIDS. In particular, the COVID-19 only prevention strategy averted about 10,500 new co-infection cases, with similar number also averted by the HIV-only prevention control.

3.
Inform Med Unlocked ; 27: 100807, 2021.
Article in English | MEDLINE | ID: covidwho-1768199

ABSTRACT

The emergence of the COVID-19 pandemic has been a major social and economic challenge globally. Infections from infected surfaces have been identified as drivers of Covid-19 transmission, but many epidemiological models do not include an environmental component to account for indirect transmission. We formulate a deterministic Covid-19 model with both direct and indirect transmissions. The computed basic reproduction number R 0 represents the average number of secondary direct human-to-human infections, and the average number of secondary indirect infections from the environment. Using Partial Rank Correlation Coefficient, we compute sensitivity indices of the basic reproductive number R 0 . As expected, the most significant parameter to reduce initial disease transmission is the natural death rate of pathogens in the environment. Variation of the basic reproduction number for different values of direct and indirect transmissions are numerically investigated. Decreasing the effective direct human-to-human contact rate and indirect transmission from human-to-environment will decrease the spread of the disease as R 0 decreases and vice versa. Since the effective contact rate often accounted for as a factor of the force of infection and other interventions measures such as treatment rate are prominent features of infectious diseases, we consider several functional forms of the incidence function, and numerically investigate their potential impact on the long-term dynamics of the disease. Simulations results revealed some differences for the time and infection to reach its peak. Thus, the choice of the functional form of the force of infection should mainly be influenced by the specifics of the prevention measures being implemented.

4.
Comput Math Methods Med ; 2021: 1250129, 2021.
Article in English | MEDLINE | ID: covidwho-1398741

ABSTRACT

We formulate and theoretically analyze a mathematical model of COVID-19 transmission mechanism incorporating vital dynamics of the disease and two key therapeutic measures-vaccination of susceptible individuals and recovery/treatment of infected individuals. Both the disease-free and endemic equilibrium are globally asymptotically stable when the effective reproduction number R 0(v) is, respectively, less or greater than unity. The derived critical vaccination threshold is dependent on the vaccine efficacy for disease eradication whenever R 0(v) > 1, even if vaccine coverage is high. Pontryagin's maximum principle is applied to establish the existence of the optimal control problem and to derive the necessary conditions to optimally mitigate the spread of the disease. The model is fitted with cumulative daily Senegal data, with a basic reproduction number R 0 = 1.31 at the onset of the epidemic. Simulation results suggest that despite the effectiveness of COVID-19 vaccination and treatment to mitigate the spread of COVID-19, when R 0(v) > 1, additional efforts such as nonpharmaceutical public health interventions should continue to be implemented. Using partial rank correlation coefficients and Latin hypercube sampling, sensitivity analysis is carried out to determine the relative importance of model parameters to disease transmission. Results shown graphically could help to inform the process of prioritizing public health intervention measures to be implemented and which model parameter to focus on in order to mitigate the spread of the disease. The effective contact rate b, the vaccine efficacy ε, the vaccination rate v, the fraction of exposed individuals who develop symptoms, and, respectively, the exit rates from the exposed and the asymptomatic classes σ and ϕ are the most impactful parameters.


Subject(s)
COVID-19/prevention & control , COVID-19/transmission , Models, Biological , Basic Reproduction Number/statistics & numerical data , COVID-19/therapy , COVID-19 Vaccines/pharmacology , Computer Simulation , Humans , Mathematical Concepts , Nonlinear Dynamics , Pandemics/prevention & control , Pandemics/statistics & numerical data , Public Health , SARS-CoV-2 , Senegal/epidemiology , Vaccination
5.
Applications and Applied Mathematics-an International Journal ; 16(1):662-681, 2021.
Article in English | Web of Science | ID: covidwho-1292517

ABSTRACT

We construct a new model for the comprehension of the Covid-19 dynamics in Cameroon. We present the basic reproduction number and perform some numerical analysis on the possible outcomes of the epidemic. The major results are the possibilities to have several peaks before the end of the first outbreak for an uniform strategy, and the danger to have a severe peak after the adoption of a careless strategy of barrier anti-Covid-19 measures that follow a good containment period.

6.
Appl Math Model ; 99: 294-327, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1293557

ABSTRACT

Malaria, one of the longest-known vector-borne diseases, poses a major health problem in tropical and subtropical regions of the world. Its complexity is currently being exacerbated by the emerging COVID-19 pandemic and the threats of its second wave and looming third wave. We formulate and analyze a mathematical model incorporating some epidemiological features of the co-dynamics of both malaria and COVID-19. Sufficient conditions for the stability of the malaria only and COVID-19 only sub-models' equilibria are derived. The COVID-19 only sub-model has globally asymptotically stable equilibria while under certain condition, the malaria-only could undergo the phenomenon of backward bifurcation whenever the sub-model reproduction number is less than unity. The equilibria of the dual malaria-COVID19 model are locally asymptotically stable as global stability is precluded owing to the possible occurrence of backward bifurcation. Optimal control of the full model to mitigate the spread of both diseases and their co-infection are derived. Pontryagin's Maximum Principle is applied to establish the existence of the optimal control problem and to derive the necessary conditions for optimal control of the diseases. Though this is not a case study, simulation results to support theoretical analysis of the optimal control suggests that concurrently applying malaria and COVID-19 protective measures could help mitigate their spread compared to applying each preventive control measure singly as the world continues to deal with this unprecedented and unparalleled COVID-19 pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL